| Graph | 2D | 3D |
| Option | Call | Put |
| Nb steps (x, y) | ||
| x | y | input | min | max | |||||
|---|---|---|---|---|---|---|---|---|---|
| Spot | = | \(S\) | from | to | |||||
| Strike | = | \(K\) | from | to | |||||
| Mat (y) | = | \(T\) | from | to | |||||
| Vol (%) | = | \(\sigma\) | from | to | |||||
| Rate (%) | = | \(r\) | from | to | |||||
| Div (%) | = | \(q\) | from | to |
Status: Missing input
| z | axis | output | ||
|---|---|---|---|---|
| \(d_1\) | = | |||
| \(N(d_1)\) | = | |||
| \(N(-d_1)\) | = | |||
| \(N'(d_1)\) | = | |||
| \(d_2\) | = | |||
| \(N(d_2)\) | = | |||
| \(N(-d_2)\) | = | |||
| \(N'(d_2)\) | = | |||
| \(e^{-rT}\) | = | |||
| \(e^{-rT}K\) | = | |||
| \(V\) | = | |||
| \(\Delta\) | = | |||
| \(\Gamma\) | = | |||
| \(\nu\) | = | |||
| \(\Theta\) | = | |||
| \(\rho\) | = | |||
| \(voma\) | = | |||
| \(Payoff\) | = | |||
| \(e^{-rT}Payoff\) | = |
| \[Option\] | \[Call\] | \[Put\] |
| \[Payoff\] | \[Max(0, S-K)\] | \[Max(0, K-S)\] |
| \[Value=V\] | \[Se^{-qT}N(d_1)-Ke^{-rT}N(d_2)\] | \[Ke^{-rT}N(-d_2)-Se^{-qT}N(-d_1)\] |
| \[\Delta=\frac{\partial V}{\partial S}\] | \[e^{-qT}N(d_1)\] | \[-e^{-qT}N(-d_1)\] |
| \[\Gamma=\frac{\partial \Delta}{\partial S}\] | \[e^{-qT}\frac{N'(d_1)}{S\sigma\sqrt{T}}\] | |
| \[\nu=\frac{\partial V}{\partial \sigma}\] | \[Se^{-qT}N'(d_1)\sqrt{T}=Ke^{-rT}N'(d_2)\sqrt{T}\] | |
| \[\Theta=-\frac{\partial V}{\partial T}\] | \[-e^{-qT}\frac{SN'(d_1)\sigma}{2\sqrt{T}}-rKe^{-rT}N(d_2)+qSe^{-qT}N(d_1)\] | \[-e^{-qT}\frac{SN'(d_1)\sigma}{2\sqrt{T}}+rKe^{-rT}N(-d_2)-qSe^{-qT}N(-d_1)\] |
| \[\rho=\frac{\partial V}{\partial r}\] | \[KTe^{-rT}N(d_2)\] | \[-KTe^{-rT}N(-d_2)\] |
| \[Voma=\frac{\partial \nu}{\partial \sigma}\] | \[Se^{-qT}N'(d_1)\sqrt{T}\frac{d_1 d_2}{\sigma}\] | |
| \[\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2}=rV\] |
| \[d_1=\frac{\log(S/K) + (r-q +\sigma^2/2)T}{\sigma \sqrt{T}}\] |
| \[d_2=\frac{\log(S/K) + (r-q -\sigma^2/2)T}{\sigma \sqrt{T}}=d_1 - \sigma \sqrt{T}\] |
| \[N(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x} e^{-\frac{t^{2}}{2}}dt\] |
| \[N'(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}\] |